目前,人们根据所选用的半导体材料将太阳能电池应用技术分为晶硅和薄膜两大类。晶硅太阳能电池在现阶段的大规模应用和工业生产中占据主导地位,但由于其成本过高,限制了其发展。相比晶硅等其它太阳能电池,薄膜太阳能电池具有生产成本低、原材料消耗少、弱光性能优良等优势。随着世界能源紧缺,薄膜太阳能电池作为一种光电功能薄膜,可以有效地解决能源短缺问题,而且无污染,还可以实现光伏建筑一体化,易于大面积推广。
CIGS薄膜太阳能电池铜铟镓硒薄膜太阳能电池是20世纪80年代后期开发出来的新型太阳能电池,典型结构为如下的多层膜结构。
CIGS具有非常优良的抗干扰、耐辐射能力,因而没有光辐射引致性能衰退效应,使用寿命长。CIGS是直接带隙的半导体材料,因此电池中所需的CIGS薄膜厚度很小(一般在2um左右)。它的吸收系数非常高达10-5cm-1,同时还具有很好的非常大范围的太阳光谱的响应特性。通过调节Ga/(In+Ga)可以改变CIGS的带隙,调节范围为1.04eV~1.72eV。CIGS系电池可以很方便地做成多结系统,在四个结的情况下,从光线入射方向按禁带宽度由大到小顺序排列,太阳能电池的理论转换效率极限可以超过50%。
制备CIGS薄膜的方法很多,包括真空蒸镀、电沉积、溅射、化学浴沉积、化学气相沉积、分子束外延、喷射热解、封闭空间气相输运法等。CIGS薄膜在高于500℃的温度下沉积在涂有Mo的玻璃衬底上,并且与通过化学沉积形成的CdS层,组成CdS/CIGS异质结太阳能电池。
CdTe薄膜太阳能电池CdTe/CdS异质结薄膜太阳能电池简称CdTe薄膜太阳能电池。它是以p型CdTe和n型CdS为异质结。一般标准的CdTe薄膜太阳能电池的结构为玻璃/TCO/n-CdS/p-CdTe/背接触层/背电极。
CdTe薄膜太阳能电池具有以下几个优点:(1)理想的禁带宽度。CdTe的禁带宽度为1.45eV.CdTe的光谱响应和太阳光谱非常匹配:(2)高光吸收率。CdTe的吸收系数在可见光范围高达10-4cm以上.99%的光子可在lum厚的吸收层内被吸收:(3)转换效率高。CdTe薄膜太阳能电池的理论光电转换效率约为30%;(4)电池性能稳定,一般的CdTe电池的设计使用时问为20年以上;(5)电池结构简单,制造成本低,容易实现规模化生产。
非晶硅薄膜太阳能电池非晶硅薄膜太阳能电池转换效率较低,但工艺成熟、成本较晶硅低廉、制备方便,适于大规模生产。
非晶硅薄膜太阳能电池主要有两种:单结和双结。单结非晶硅薄膜太阳能电池仅含一种光吸收功能层,为非晶硅;而双结非晶硅薄膜太阳能电池含2种光吸收功能层,一般为非晶硅和微晶硅。两者结构示意图如图所示。
相对于单晶硅太阳能电池,非晶硅薄膜是一种极有希望大幅度降低太阳电池成本的材料。非晶硅薄膜太阳能电池具有诸多优点使之成为一种优良的光电薄膜光伏器件。(1)非晶硅的光吸收系数大,因而作为太阳能电池时,薄膜所需厚度相对其他材料如砷化镓时,要小得多;(2)相对于单晶硅,非晶硅薄膜太阳能电池制造工艺简单,制造过程能量消耗少;(3)可实现大面积化及连续的生产;(4)可以采用玻璃或不锈钢等材料作为衬底,因而容易降低成本;(5)可以做成叠层结构,提高效率。
非晶硅薄膜主要由气相沉积法制备,目前,普遍采用的是等离子增强化学气相沉积法(PECVD)。在PECVD法沉积非晶硅薄膜的方法中,一般原料气采用SiH4和H2,制备非晶硅薄膜叠层电池时则采用SiH4和GeH4,在沉积过程中,加入B2H5或PH3。可实现掺杂。SiH4和GeH4在低温等离子体的作用下分解产生a-Si或a-SiGe薄膜。
非晶硅薄膜太阳能电池仍存在一些需要解决的问题。(1)由于Staebler-Wronski效应的存在,使得非晶硅薄膜太阳能电池在太阳光下长时间照射会产生效率的衰减,从而导致整个电池效率的降低;(2)沉积速率低,影响非晶硅薄膜太阳能电池的大规模生产;(3)后续加工困难,如Ag电极的处理问题;(4)在薄膜沉积过程中存在大量的杂质,如O2、C等,影响薄膜的质量和电池的稳定性。
非晶硅薄膜太阳能电池的下一步研究主要有以下几个方向:其一是采用优质的底电池i层材料;其二朝叠层结构电池发展;第三是在保证效率的条件下,开发生产叠层型非晶硅太阳电池模块技术;最后使用便宜封装材料以降低成本。