2.扩散结束前通入携POCl3气体
在硅片表面如电极栅线状印刷好高浓度磷浆,放进常规扩散炉中进行扩散。在扩散过程中,往扩散炉中加入充足的氧气对硅片表面进行氧化,控制好时间,可在非印刷区得到适当厚度的氧化层,如图3(a)所示。然后通入携POCl3气体,通入的POCl3会分解出P2O5,并沉积到这一氧化层的表面得到一层很薄的磷硅玻璃。由于这一氧化层对磷硅玻璃中磷原子往硅片深处的扩散有消弱的作用,继续扩散一段时间后可以在此区域得到比印刷区低的表面杂质浓度,如图3中(b)所示。扩散结束后用氢氟酸漂洗,去除磷硅玻璃和氧化层便可以形成轻掺杂浅扩散区。这样,在扩散结束后便得到选择性发射极结构。
3.快速扩散与常规扩散的结合
在硅片表面电极栅线状印刷高浓度磷浆,放入快速扩散炉中进行扩散,如前所述这样得到的硅片,在不印刷磷浆的地方,浓度是过低的。为弥补其磷浓度的不足,再将硅片放入有POCl3气氛的常规扩散炉中进行扩散,通一小段时间(2~3分钟)的携源气体,再关掉气源进行扩散,可以在不印刷磷浆的地方形成低掺杂浅扩散区,这样二次扩散后便可以获得选择性发射极。此方法虽然是双步扩散法,有对硅片的二次高温处理。但由于快速扩散中的扩散时间短,热耗也少。而在第二次常规扩散中,要得到低掺杂浅扩散区,因此扩散时间相对于现行的工业化生产太阳电池的扩散时间也要短。这样总的热耗还是较小的,仍可以进一步降低工艺的成本。而且由于快速扩散可以将杂质和扩散结向硅片内更深的地方推进,因此利用快速扩散的方法很容易获得高掺杂深扩散区。
结论
在p-n结硅太阳电池中引入选择性发射极结构对提高电池的光电转换效率是有好处的。实现该结构的方法是很多的。以现行的实现该结构的方法为基础,可以找到一些改进的方法,从而可以进一步降低实现该结构的成本和提高成结的质量。