选择性发射极太阳电池结构及其实现方法
发布时间:2013-01-21     来源: solarzoom
本文摘要:太阳电池的发展方向是低成本、高效率,而选择性发射极结构是p-n结晶体硅太阳电池生产工艺中有希望实现高效率的方法之一。选择性发射极...

    作者: 屈盛 刘祖明 廖华 陈庭金  

    太阳电池的发展方向是低成本、高效率,而选择性发射极结构是p-n结晶体硅太阳电池生产工艺中有希望实现高效率的方法之一。选择性发射极结构有两个特征:

  (1)在电极栅线下及其附近形成高掺杂深扩散区;(2)在其他区域形成低掺杂浅扩散区。结合其特征,实现选择性发射极结构的关键便是如何形成上面所说的两个区域。其实现方法有很多,但总的来说,可以分为双步扩散法和单步扩散法。双步扩散法是进行两次热扩散而形成该结构。而单步扩散法是在一次热扩散中形成该结构。这两种扩散法都有很多种操作形式。但由于双步扩散法存在不足,单步扩散法已逐渐成为制作选择性发射极的主要方法,其具体操作一般都是首先在硅片表面的不同区域得到不同量的扩散杂质源,由于扩散杂质源的不同将会得到不同的扩散结果,进行热扩散后就形成高低浓度的掺杂,得到选择性发射极结构。所以,本文主要就单步扩散法中实现选择性发射极的工艺方法进行讨论,并提出几种可行的改进方法,期望能为低成本实现选择性发射极结构提供新的思路。

  选择性发射极结构的特征及优点

  选择性发射极结构的特征

  选择性发射极结构有两个特征:(1)在电极栅线下及其附近形成高掺杂深扩散区;(2)在其他区域(活性区)形成低掺杂浅扩散区,这样便获得了一个横向高低结。这种结构有几种常见的形式,在理想的情况下,如果不考虑扩散区域的杂质浓度差异,而认为杂质是均匀分布的,可以用图1中的(a)、(b)、(c)表示。

   选择性发射极结构的优点

  总的来说,该种结构的优点是可以提高太阳电池的开路电压Voc,短路电流Isc和填充因子F.F.,从而使电池获得高的光电转换效率。而这样的好处正是在太阳电池不同的区域中形成掺杂浓度高低不同、扩散深浅不同所带来的。

  (1)在活性区形成低掺杂浅扩散区带来的好处

  在此区低掺杂可以降低少数载流子的体复合几率,且可以进行较好的表面钝化,降低少数载流子的表面复合几率,从而减小电池的反向饱和电流,提高电池的开路电压Voc和短路电流Isc。另外,因越靠近太阳电池的表面,光生载流子的产生率越高,而越靠近扩散结光生载流子的收集率越高,故浅扩散结可以在高载流子产生率的区域获得高的收集率,提高电池的短路电流Isc。

  (2)在电极栅线底下及其附近形成高掺杂深扩散区带来的好处

  在此区高掺杂,做电极时容易形成欧姆接触,且此区域的体电阻较小,从而降低太阳电池的串联电阻,提高电池的填充因子F.F.。杂质深扩散可以加深加大横向n+/p结,而横向n+/p结和在低掺杂区和高掺杂区交界处形成的横向n+/n高低结可以提高光生载流子的收集率,从而提高电池的短路电流Isc。另外,深结可以防止电极金属向结区渗透,减少电极金属在禁带中引入杂质能级的几率。

分享到: