模式5[t4~t5]
在t4时刻,钳位二极管D1开始工作,原边不足以向副边提供能量,Cc通过Lf、Cf、D1开始向负载提供能量,同时C1继续充电、C3放电至t5时刻。
模式6[t5~t6]
t5时刻,C3放电完毕,续流二极管D3开始导通,为V3实现零电压开通提供了条件。V4处于续流状态,此时原边电流迅速下降,负载电流主要由钳位电容Cc提供,流过Cc的电流增大,在t6时刻原边电流减小为零,此时Cc的电流值达到最大。
模式7[t6~t6]
t6时刻,原边电流为零,负载电流全部由钳位电容Cc提供,整流二极管两端承受的反压随钳位电容Cc的放电下降。
模式8[t7~t8]
t7时刻,钳位电容Cc中的能量被全部释放,整流二极管VD1~VD4开始续流,变压器原边电流为零并且保持。在t8时刻关断V4,实现了零电流关断并结束前半个周期的换流;下一个时刻,V2零电流开通,开始进入下半个周期的循环,工作模式和上述分析基本相同。
1.2 实现软开关的条件
1.2.1 超前臂实觋ZVS条件
为实现零电压开关,要求要有足够的能量来使得同一桥臂开关管两端并联的电容充、放电,从而让即将开通的开关管的反并联二极管自然导通。所以要实现超前桥臂的零电压开关,需要在开关管导通和关断之前将电容C1和C3上的电荷抽走。根据模式4可得到最小死区时间。
Td》(C1+C2)Uin/2nI0 (3)
1.2.2 滞后臂实现ZCS条件
变压器漏感Lr的大小是以能实现滞后桥臂ZCS为前提的,假设滞后臂开关管的开通时间为ton,要实现ZCS需要(t1-t0)》ton,则根据工作模式1可得:
Lr=Uint/Ip(t)≥Uin(t1-t0)/2nI0≥Uinton/2nI0 (4)
2 关键参数的设计
变换器采用了移相控制,超前臂两开关管互补180°导通,两开关管驱动信号之间设置一定死区,滞后臂设置与超前臂相同,只是在相位上有一定的滞后,滞后角度反映了有效占空比的大小。设计步骤如下:
(1)设置两对桥臂的死区时间Td;
(2)设置占空比D,计算匝比k;
(3)根据式(1)算出谐振电感Lr,根据式(2)求出钳位电容Cc;
3 仿真研究
为了检验上述分析,采用matlab仿真软件对无源钳位的ZVZCS全桥变换器进行开环仿真(如图3所示),根据以上分析,设计电路参数为:输入电压Uin=36V,输出Uo=400V,输出功率Po=1000W,移相角30°,开关管频率fs=20kHz,输出滤波电容Cf=100 μF,输出滤波电感Lf=3mH,超前桥臂开关管并联电容C1=C3=0.2 μF,输入滤波电容Cin=1000μF,谐振电感Lr=0.36 μH,钳位电容Cc=100nF,仿真结果如下:
图3为超前臂G1的管压降和驱动波形;在G1导通之前VDS1下降为零,在G1关断之前,VDS1保持为零,因此超前臂实现了ZVS.图4为滞后臂G3的驱动电压和流过G3电流波形;在G3开通之前,Ip电流保持为0,在G3关断之前Ip电流下降为0,滞后臂实现了ZCS.图5为变压器原、副边的电压波形;原边与副边的占空比存在差异,副边电压上升比原边电压上升略微滞后,这是由变压器原边漏感Lr造成的;而在电压下降时副边电压也滞后于原边电压,这是由无源钳位电路所造成;总体来看,较传统的ZVS变换器器占空比丢失有所减小。图6是副边整流二极管电压、电流波形,经过计算二极管电压尖峰理论值为535V,实际副边尖峰电压约540V,二极管电流尖峰理论值5.1A,实际电流尖峰5.4A较传统的ZVS变换器尖峰明显减小。图7是负载R输出电压、电流波形,由仿真图可以看出,输出电压最终稳定在400V左右,输出电流最终接近2.5A,输出功率Po=1000W.
4 结束语
本文结合光伏并网逆变器的特点介绍了一种无源钳位的ZVZCS变换器,此变换器较好地实现了超前臂的ZVS、滞后桥臂ZVS,降低了系统的损耗;且原副边占空比丢失较传统的ZVS变换器有所减小,副边整流二极管的寄生振荡基本得到消除;设计了一套1kW的参数,通过matlab软件仿真初步验证了此变换器的正确性和可行性。