太阳能逆变器设计的最新趋势
发布时间:2012-12-13     来源: OFweek太阳能光伏网
本文摘要:由于能源成本日益攀升,太阳能发电正逐渐成为一项可行的替代能源。德国政府通过立法,推出各种激励手段积极鼓励可再生能源的使用(如《...


    太阳能逆变器必须可靠,以尽量减小维护和停机检修的成本。这些逆变器还必须具有高效,以尽量增大发电量。太阳能逆变器设计人员还需付出相当的努力,以尽可能地提高效率。

  有很多方法能够提高升压逆变器的效率。由于升压逆变器可在连续传导模式或边界传导模式(CCM 或 BCM)下工作,这就衍生出不同的优化方案。在CCM模式中,损耗的一大主因是升压二极管的反向恢复电流;在这种情况下,一般使用碳化硅二极管或飞兆半导体的Stealth 二极管来解决。太阳能逆变器更常采用的是BCM模式,而尽管对这类功率级通常建议选择CCM模式,但采用BCM模式的原因在于BCM模式中二极管的正向电 压要低得多。而且,BCM模式也具有高得多的EMI滤波器和升压电感纹波电流。这时,良好的高频电感设计是一解决方案。

  采用两个交错式升压级来取代一个升压级乃一种新方法。这样一来,流经每个电感和每个开关的电流便能够减半。另外,采用交错式技术,一级上的纹波电流 可抵偿另一级的纹波电流,因而可在很宽工作输入范围上去除输入纹波电流。如FAN9612交错式BCM PFC一类的控制完全能够轻松满足太阳能升压级的要求。

  逆变器中的升压开关有两个选择:IGBT或 MOSFET。对于需要600V以上额定开关电压的输入级,常常会采用1200V IGBT快速开关,如FGL40N120AND。对于额定电压只需600V/650V的输入级,则选用MOSFET。输出H-桥级的设计人员一直以来都采用600V/650V MOSFET,但因为新的草案规范要求输出级以四象限工作,于是在这一领域重新点燃了人们对IGBT的兴趣。MOSFET虽然内置有体二极管,但相比 IGBT中采用的组合封装二极管,其开关性能很差。新型的场截止IGBT能够以10V/ns的速度转换电压,较之以往的旧式产品导通损耗大大改善。这种集成式二极管具有出色的软恢复性能,有助于降低500A/us以上的高di/dt造成的EMI。对于16kHz-25kHz开关,建议采用IGBT,例如飞 兆半导体的 FGH60N60UFD。

太阳能逆变器的发展趋势:交错式BCM升压+三电平逆变器

  太阳能逆变器设计的另一个趋势是扩大输入电压范围,这会导致相同功率级下输入电流的减小,或相同输入电流下功率级的提高。输入电压比较高时,需要使用额定电压更高(1200V范围内)的IGBT,从而产生更大的损耗。解决这一问题的一个方法是采用三电平逆变器。

  采用两个串联的电解电容可把高输入电压一分为二,将中间点与零线 (neutral line)连接,这时就可以再采用600V开关了。三电平逆变器可在三个电平间进行转换:+Vbus、0V 和 –Vbus。这方案除了比1200V开关构建的解决方案更有效之外,三电平逆变器还有一个优势,就是输出电感大为减小。

  对于整功率因数,三电平逆变器的功能可解释如下。在正半波Q5始终导通期间,Q6 和 Q4一直关断。Q3 和 D3构成一个降压转换器,产生输出正弦波电压。如果只需要整功率因数,Q5 和 Q6 可设计为 50Hz开关,采用速度极慢Vce (饱和电压)极低的IGBT,比如FGH30N60LSD。若需要较低的功率因数,Q5 和 Q6必须工作在开关频率下一小段时间。Q3 和 Q4的二极管应该是快速软恢复二极管。Q3 和 Q4可安排为快速恢复MOSFET,比如FGL100N50F ,或者是快速 IGBT,如FGH60N60SFD。

  基于上述分析,三电平逆变器拓扑可获得98%以上的效率,因此可能成为5kWp以上功率级非隔离逆变器的主流结构。
 


 

分享到: