集中式逆变器对组串型逆变器优势比较
本文摘要:随着光伏发电技术的越发成熟,电站建设成本的降低和补贴制度的日益健全,光伏电站的容量从最早的几个千瓦发展到现在的几十兆瓦甚至几百
b.组件衰减程度
集中式发电阵列组件为2011年投入运行,衰减严重,而组串式逆变器发电阵列组件为2013年投入运行,组件衰减程度远低于集中式发电阵列。经过实际测量,集中式测试阵列组件2年间平均衰减达到3.13%,最终数据的得出必须将组件衰减考虑进去。
c.交直流线损
结合组串式方案和集中式方案的各自组网特点,组串式逆变器交流侧线损较大,集中式逆变器直流侧线损较大,而组串式逆变器上传的发电量数据并未包含交流侧线损。根据分析线缆损耗占比为1%,所以组串式测试阵列需扣除这部分发电量。
考虑到以上三个因素后最终得出的测试数据如下:
某电站实测数据分析
注:考虑到6月8日组串式阵列因停机或其他原因造成的发电量异常,故剔除该日数据。
通过以上数据对比可以得出,与A厂家相比组串式逆变器发电量平均低1.418%;与B厂家相比组串式逆变器发电量平均低2.174%;而与C厂家相比组串式逆变器发电量也仅高出1.0%。经过计算平均发电量后得出,组串式逆变器要比集中式逆变器发电量低0.864%。综上所述,组串式逆变器在大型地面电站中的应用无法为客户带来收益的提高。
二、组串式逆变器是否满足大型地面电站对设备功能的要求?
(1)零电压穿越保护的问题
根据GB/T19964-2012中对低电压穿越故障的要求,逆变器必须具备零电压穿越能力,要求逆变器能够在电网电压跌至0时,保持0.15s并网运行,当电压跌至曲线1以下,允许逆变器从电网中切出。
首先,根据组串式逆变器组网方式可知,组串式方案中逆变器间无高频载波同步,根本无法解决逆变器间的并联环流问题。其次,在该方案中距离箱变远端的逆变器线路阻抗较大。再有,因组串式方案交流侧采用多机并联模式,造成多台逆变器在电网电压跌落时无法统一输出电压及电流的相位。以上原因均会严重影响逆变器对零电压穿越故障的判定和过程控制。
在GB/Z19964-2005标准执行阶段,集中式并网逆变器不但通过实验室低电压穿越测试,同时也通过了现场低电压穿越测试,可见实验室中的测试仅表明单个设备能够实现穿越功能,但现场测试则说明逆变器在实际工况下应对电网故障的能力。为了证明逆变器能够应对现场实际工况下的电网故障,未来零电压穿越测试必然会增加现场测试环节,但是组串式逆变器能否通过现场测试的考验这是一个问题。